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SPECIFYING THE SEMANTICS OF WHILE-PROGRAMS

A Tutorial and Critique of a Paper by Hoare and Lauer

by

Irene Greif and Albert R. Meyer

Massachusetts Institute of Technology
Cambridge. Massachusetts

Abstract

We consider three kinds of mathematical objects which can be designated as the “meaning’
or ‘semantics’ of programs: binary relations between initial and final states, binary relations on
predicates (partial correctness semantics), and functionals from predicates to predicates (predicate
transformers). We exhibit various formal specification mechanisms: Induction on program syntax.
axioms, and deductive systems. We show that each kind of semantics can be specified by several
different mechanisms. As long as arbitrary predicates on states are permitted, each kind of
semantics uniquely determines the others — with the sole exception of the weakest pre-condition
semantics for nondeterministic programs.

S

KEY WORDS: semantics of programming languages
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I. Introduction

Our aim in this paper is to clarify the characteristics of a proper specification of
programming language semantics. We illustrate alternative specifications of several different kinds
of seman t ica l objects and examine the extent to which these different semantics capture the same
information about progra ms.

Hoare and Lauer [1974] have advocated using a var iety of styles of programming language
definitions to fit the variet y of users from implementers to program verifiers. They consider the
question of whether different specifications determine the same language by showing that the
specif ications are what they call ‘con sistent ’. Howev er , t heir treatment skirts the question of
w hether the specificat ions can each be taken to determine the language adequately.t Although, as
we w ill show , any one of the kinds of semantical specifications they discuss -- operational
definitions, relational ‘theories .’ and partial cor rectness assertions --  can be used to determine
meaning uniquely. Hoare and Lauer do not make the case in their paper. In fact , bot h their
relational and partial correctness specifications are satisfied by several different semantics, only one
of which is desired.

We basically agree with Hoare and Lauer t hat altern .,te specificat ions can and should be
given, but feel that the difficulties noted above indicate the need for more careful attention.
Additional pitfalls which we attempt to avoid include confusion between the mathematical object
which is designated to be the meaning of a program and meth ods for specifying that object ;
confusion between consistency and equivalence of two definitions; betw een completeness of a theory
and it s havin g a unique model. Whi le these issues are familiar in mathematical logic, we take this
opportunity to survey them in the context of the programming language semantics of a trivial class
of w~ak-programs. Because these programs are trivial, none of the challenging research problems
concerned with explaining how complex programs behave, or what they ‘mean,’ can arise. This
allows us to focus more clearl y on the way in which the semantics are specified, without being
distracted by any difficulty in understanding what that semantics may be.

Of particular interest to us is the thesis that a programm ing langua ge semantics can be
specified by giving all the ‘before -after ’ assertions true of programs in the language. This thesis
appears first to have been put forward by the title of Floyd’s seminal paper (1967]. Hoare and
Wi rth (1973] carried out the first serious attempt to apply the thesis in practice by specifying the
semantics of a substantial fragment of the programming language PASCAL in this way. More
recently, Dij kstra has advocated a similar approach to ex plaining semantics [Dij kstra . 1976, p. 17]:

...we know the possible performance of the .., [program a) ... suf f ic ientl y well , provIded that
wo ran dcr,i,. for any pos i-conditinn .. It)) ,. the corresponding wea kest pre-cond.tio n

[wp0(Q)] ... hccause then we have capt u red what the .. . [pro g ram] ... can do for us , and in the
jar gon the latter is ca lled ‘its semantics ’.’

In Sections 2 and 3 we considej different techniques for specifying the input-out put behavior ,
i.e., relational semantics, of programs. In Sections 4 and 5 we analyze semantics ba sed on sets of
partial correctness assertions and weakest pre-conditions

— ~~~~~~~~~~~~~~~ ~~
. .. .-~~~~
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Since most of the proofs are entirely routine, we have postponed them to appendices.
Nevertheless, for completeness most of the proofs are given.

This paper can be read without prior familiarity with Hoare and Lauer’s paper.

2. The Programming Language and Meanings for It

2.1 W hile-Programs

Following Hoare and Lauer, we examine alternative specifications of the meaning of a trivial
programming language with primitive statements, while statements, and statement lists. The syntax,
omitting details of the form of predicate expressions is as follows:

<program> ::— <primitive statement> I <while statement> I
.cprogram>;.cprogram> I NOP

<while statement> ::— while <predicate expression> do <program>

As is usual with abstract syntax, we will not concern ourselves with ambiguity In parsing or with
detailed syntax of expressions and primitive statements.

We assume that programs run on machines with states. We treat the states simply as abstract
elements in some fixed set S. ignoring their internal structure. In many familiar examples primitive
statements define total functions from states to states, but we need not make this assumption.
Primitive statements may be partial, i.e. for some state s there may be no related state, and
nonfu nctional 2, i.e. for some states there may be more than one related state. A primitive
statement, A, thus has an effect on states which can be defined by giving an initial-state , f inal-state
relation R4 c SxS such that (s , s ’) a R A 1ff A executed in s can terminate In state s ’.

Exam ple Suppose that a state is an assignment of values to variables (to be thought of as a state
of computer memory giving the contents of all the registers, arrays, etc.), and consider the primitive
assignment statement choose u I n (1 where u is a variable of some basic type and U is a variable
ranging over finite sets of elements of the same basic type. Then (s,s ’) € ~~~~~~ u I n U ~ffs( X)  — s ’(X) for all variables X� u and s ’(u) € s(U) .

Note that Rchoose ~ ifl u is partial because s(U) may be empty, and is nonfunctional because
s( V) may have more than one element.I

A predicate P is a mapping from states to truth values. Predicate expressions p, q,... appear
In programs. We will use P. 4..., respectively, to denote the predicates corresponding to these
expressions.3 For simplicity, we assume that predicate expressions always yield values, so that the
predicate P associated with an expression p Is true or false at each state and is never undefined.

J iLT .
~~~ -~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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We use the following notation throughout what follows:

a , b, c programs.

A primitive statements,

s , t states (elements of the set S of all states),

p. q predicate expressions,

P. Q predicates on sta tes ,

L, M. R binary relations on states (subsets of SxS),

~/f .~~~ binary relations on predicates (subsets of 2Sx2~).

Each of these letters may appear with subscripts or multiply primed, e.g., 3l’ s ’, Q~”, etc.

2.2 Semantics and Specifications

A semantics for a programming language is a mapping from programs to objects in a
domain of meanings . Examp les of meanings are sets of state sequences, relations on states , relations
on predicates . and functionals on predicates (predicate transformers). A semantical spec if icatIon
determines such a mapping, or perhaps a family of acceptable mappings, from programs to
meanings. Thus, we do not require that a specification determine semantics uniquely. For example,
in a typical specification error messages may be left to an implementer’s discretion. Differing
implementations of error messages will then correspond to differing semantical mappings which
satisfy the specification~(cf section 4.5).

A semantics is a mathematical object , and distinctions among semantics can be made
precisely. In contrast , our classification of specification techniques is informa l -- we do not attempt
to give a precise or exhaustive characterizat ion of methods for specifying semantics. Examp les of
specification techniques include operational definitions, inductive definitions, axioms, and deductive
systems. It should be clear by example below what we will mean by the last three. Loosely, what
we mean by an operational definition is one which has a computational flavor reflecting the step
by step execution of programs. Operational definitions are not considered in this paper. Two
examples appear in Hoare and Lauer’s paper in their ‘interpretive” and ‘computational
definitions. In particular , their interpretive definition is an abstract machine which can execute
program steps.

A semantics can also have a computational flavor. An example Is a mapping of programs
into sets of state sequences, where each sequence consists of the successive states which are reached
during execution of the program. The second ‘computational’ definition in the Hoare and Lauer
paper is of just this semantics.

L _ _ _ _ _ _ _ _ _ _
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We note that such an ‘operational’ semantics need not be specified operationally. In fact, we
can easily write a concise inductive specification of this semantics for our language. Each program
a is mapped into the set of state sequences (or trajectories ) Tr6. We assume that the initial-state,
final-state relations, R4. of primitive programs A are given. The state sequence meaning. Tr4, of
A Is the set of sequences is ’ such that (s,s ’) a R~ . The state sequence meanings of other programs
are defined by induction on program structure , as follows:

TRI. TrNOp — (is I s ~ state),
TR2. Tra~ - TrO:Trb.
TR3. Tr~h~l~ p do a - (Trp:Tra)

~ Tr_,.

where Tr0:Tr6 is the set of state sequences s1...s2...s3 such that 
~~~ 

€ Tr~ anti
€ Tr~, Tr~ - ( is I P(s)), and (TrY° - AU Tr U Tr:Tr U ... . where A is the singleton set

containing the null sequence (defined to act as an identity element under the ‘:“ operation).4

This association of sets of state sequences to programs is the same as that specified by Hoare
and Lauer , and it clearly describes a reasonable kind of ‘~mantics for our language. To see this,
note that NOP does not change the state , and the prc~ am a;b will follow a computation sequence
s ... s ’ ~ff the program a started ifl s can follow a cr~mpuration sequence s ... t and the pi ogram b
can follow ... s ’. Similarly, for while loops, if P(s) then s ... s ’ is a computation sequence 1ff there
are sequences -~ ~ 

5l ~2 5k ... s ’ which ar e computations of a, F’~1) for all the 3i~ 
—‘P(s’), and

s ... s ’ 
~~~~~~~~~~~~~~~~~~~ 

If—P (s) then whlle p doaacts like a NOPon s.that is,s s €
Tr WAIIe p do a

Hoare and Lauer show that their two operational definitions are ‘consistent” In that both
define the same standard relational semantics , R , mapping program a to relation Ra. These
initial-state, final-state relations can be defined as follows:

Ra — ((s ,)  I there ~s a sequence 5 ... t € Tra).

Thus the standard relational semantics can be defined in terms of the state sequence
semantics. (Consequently any specification of the latter semantics indirectly also specifies the
former. It will accordingly be important to keep track of which kind of meanings are being
specified in any given context. We illustrate this point further in Section 4.4.)

In addition to considering- how a specification determines a semantics, we will examine ways
In which differing semantics can determine one another. We shall say that one semantical
mapping determines another 1ff any two programs which are assigned the same meaning in the
meaning dcmain of the first semantics are also assigned the same meaning in the meaning domain
of the second semantics. Two semantics are equivalent 

~ff 
each determines the ocher. Thus, even if

‘he domains of meaning of two semantics consist of distinct kinds of mathematical objects, it may be
that the two semantics can be considered equivalent by this definition.

Equivalent semantics make exactly the same distinctions among programs. Thus the

Li 
~~~~~~~~~~~~~~~~ - - - -— ~~~~ -~~-~~ - - ii
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meaning of a progra m according to one semantics uniquely determines the meaning of that
program according to all equ iva lent semantics. From a mathematica l point of view this means that
equiva lent semantics provide exactly the same information abou t programs. Of course the method
for transformin g one meaning into another may be laboriou s or otherwise inconvenient. This is
the rationa le for making available independent speci fi cations of semantics which may be
equivalent. A similar rationale applies for presenting a variety of differen t specifications for the
same semant ics.

To illustrate these definitions, note that the st ite sequence sema ntics determines the standard
relational semantics , since Tr 0 — Trb clearly implies R0 — Rb. It should also be clear that they are
not equ ivalent: NOP and NOP;NOP are the two most trivial prog rams with distinct state sequence
meanings but the same standard relational meaning.

We will show that the standard partial correctness semantics considered in Section 4 , two out
of three of the predicate transformer semantics in Sect ion 5, and the standard relational semantics
are equivalent , but aip (Dij kst ra’s weakest pre-condition predicate transformer ) and the standard
relational semantics are incomparable, i.e., neither determines the other.

3. Relational Semantics

in this section we will consider severa l alternative sp ecthcazlons of the standard relational
semantics, R, which associates with each program a the relation R0 defined in Section 2. More
generally , an arbitrary relat ional sena ntics M is any mapping which assi gns to each program a
some relation M0 c S xS.

3.1 An Induc t ive Definition

A simple definition of the relation R4 to be associated with any program a can be given by
induction on the syntax of programs , using only familiar mathematical operations on relations. In
order to do this it is convenien t to define R~ for any predica te expression p to be ( (s , s ) l  P(s)). For
R1, R2 c SxS. let R 1° be th e reflexive transitive closure of R1, and R 1.R2 the composition of R1 and
R2. We assume that relations R4 for each primitive statement A are given . Then the relations
associated with programs can be defined as follo ws.

RI. R NOP — ((s.s) I s a S) — the identity on S,

R2. Ra~~~Ra Rb,

R3. RwAue p do a - (R p Ra)° R_ ip.

This spec ification is trivially derived from TRi-3 given in Section 2; obviously R1-3 specifies
directly the same standard relational semantics that TRI-3 specified Indirectly.

_____- 
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3.2 Some Axioms for the Standard Relational Semantics

Hoare and Lauer choose to specify the standard relational semantics by giving a system of
axioms for statements of the form started in state s , program a terminates in state s ’. W e shall
refer to such assertions as “transition assertions”, and follow Hoare and Lauer in using the notation
s(a)s ’ to denote such a statement. Thus,

Defini tion 1: s (a)s ’ is true for M :ff (s , s ’) c Ma. where M is an arbitrary relational semantics.

Their axioms 5 are as follows:

HLI .  s(A)s ’ ~~
(5 . S ’ ) € R A, —

HL2. s(a;b) s ’ .. 3t[s (a)t A I(b)s ’] ,

HL3.  s (wlt iie p do a)s ’ -.

HLI. Vs1. 
~~~~~ 

A P(s1) A s 1(a) s2 ) — Q~s2))
[(04s) A s(wh.lle p do a)s ’) .iQJs’)),

HL5. s (NOP)s ’ . s  — 5 ’.

They go on to prove that the standard relational semantics R is a model of HLI-5, that Is,
every instance of H LI-S is true for R , so that any conclusion which logically follows from these
axioms will be true of the standard semantics.

Of course this meets only half the requirements for specifying the semantics, since one must
also show that any transition assertion which is true of the standard semantics follows logically
from the ax ioms. Unfortunately HLI-5 do not imply all the true, assertions, contrary to the
intuitive confidence in the completeness of the theory” expressed by Hoare and Lauer [p. 144), as

we now illustrate.

We can understand the significance of HLI-5 as follows. If M is a model of HI, we can
conclude that M4 - R A for each atomic statement A. Similarly, from HL5 we conclude that
M NOP - the identity on S - R NOp, and from HL2 that M6;1, - Ma0Mk It follows that Ma - R4
for every while-free program a whenever M is a model of HLI, 2, 5.

I~

.

Now consider the particular “divergent Poop” relational semantics L defined as fol lows:

La — Ra if a is while-free,

La -, otherwise.

Then L Is obviously a model of HLI, 2, 5. But s(whlle p do a): ’ is always false for L, so HL3-4
are true , vacuously , for L. Hence L is also a model of HLI-5.

~~~~~~~~~ ~~~~~~~~~~~~~~~~- - - _ ___.__.____ ~._ ___ _ - .- _ --——. -_ — ~.-*_,__. 
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The divergent loop semantics corresponds to an implementation in which the interpretersimply loops unconditionally whenever it starts to execute a while statement. S nce L is a modtl,
statements which logically follow from HLI-5 must always be true of this implementation. In
particular, no transition assertion involving a program containing a while- loop follows from HLI-5.and so it seems hard to imagine circumstances in which HLI-5 would serve as an adequatecharacterization of the standard semantics. (However , in Section 4.4 we tr y to set matters right byIndicating a sense in which HLI-5 do in fact specify R.)

3.3 A Complete Set of Axioms for the Standard Relational Semantics

There is no inherent obstacle to presenting axioms in the spirit of HLI-5 which correctly andcompletely specify the intended semantics. Indeed, adding two more axioms will suffice:

HL6. —‘P(s) -, s (whUe p do a) s ,

H L7. (P(s) A s (a) s ’ A s ‘(while p do a) t) -. s(w/iile p do a) t.

It is easy to verify that the ~andard semantics is a model of HLI-7. In Appendix A weprove:

Theorem 1: The standard relational semantics is the only model of HLI-7.

We remark that HLI-7 can be shown to be independent, i.e~ Theorem I is not true when anyone of HLI-7 Is omitted.

3.4 A Deductive System for the Standard Relational Semantics

Another, perhaps more straightforward, way to specify the standard relational semantics is to
give a system of axioms and inference rules for deducing transition statements. One such system is.

Axioms:

TI. s(A)s ’ , for all s , s ’ £ S such that (s, s ’) € RA,

T2. s (NOP) s ,

T3. s(whil. p do a): , for all : € S such th at - ‘P(s).

Inference Rujes:

T4. s(a) t , t(b)s ’ ‘— s(a b)s ’,

T5. s (a)t , t(while p do a) : ’ ~
- s(while p do ats ’, for all s € S such that P(.s).

-- —. ~~~~— .-- .— .- —.- . — _s~~~~. _ _____ ___ _  .—~~~~~~ - —-. ~~-.- ———~~.-.~ — 
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Let Th(TI-5) be the set of transition statements provable from Tl-3 using T4-5.

Lemma I : Ra — {(s , s ’) I s (a)s ’ € Th(TI-5)J.

The proof, which we omit, is a routine induction on the structure of a and the number of
executions of the body of a while-loop. (Cf. Appendix E, however, for a similar proof for a more
general deductive system.)

Thus, the deductive system Tl-5 specifies the same relational semantics as P1-3, and either
can serve as the definitive specification. (We caution the reader not to confuse this deductive
specif icat ion of a relational semantics, with the deductive “theory” of Hoare and Lauer which we
treat in Section 4.2 as a specification of a partial correctness semantics.)

The specification of Ra in terms of Th(TI-5) given in Lemma I cart be rephrased in terms of
familiar properties of deductive systems. Namely, TI-S is sound for B, which means that every
termination assertion in Th(Tl-5) is true for B, and Tl-5 is complete for B, which means that every
termination assertion true for R is in Th(Tl-5). Thus we can restate Lemma I as

Theorem 2: The set of transition assertions derivable in the system TI-S Is equal to the set ofF transition assertions true for the standard relational semantics.

4. Partial-Correctness Specifications and Semantics

Assertions of the form “if P holds before executing a, then if and when a halts, Q will hold”
occur frequently when the behavior of programs is being described. Such assertions are called
partial correctness assertions (pca’s) and are abbreviated P{a}Q~

We shall define a partial correctness semantics for our programming language to be any
mapping which assigns to each program a some binary relation on predicates. Any relational
semantics M naturally determines a corresponding partial correctness semantics ~~ which assigns
to program a the relation ~~~ consisting of those pairs (P, Q~) such that P(a)Q,,,is true of M.6

We shall observe that every relational semantics is equivalent to its associated partial
correctness semantics. We give a complete deductive system for pca’s and an axiom system for
pca’s. The pca’s will serve as specifications of partial correctness semantics as well as specifications
of relational semantics. The significance of specifications which have many relational models Is
considered, and we analyze several such specifications.

4.1 The Standard Partial Correctness Semantics
4

Definition 2: A partial correctness assertion consists of a program a and a pair (P, Q) of predicates
on states, and is written “P(a)O~

” The pair (P, Q~) holds for a binary relation, R, on states

23 --
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I/f Vi, s ’((P(s) A (s, s ’)  € R) -. Q~s ’)): P(a)Qis true for a relational semantics M if f ( P, Q) holds
for Ma.

The partial correctness semantics .~4’ in which .~~ — ((P, QJ I P(a)Q is true for B) is called
th. standard partial correctness semantics.

An arbitrar y relation Jfon predicates also determines a relation on states in a natural way.
The relation is the maximum relation, M, such that all the pairs in J/ hold for M. (That there
alwa ys Is such a maximum relation is shown in Appendix B, Lemma Bl.) The rationale for taking
this relation on states to be the one determined by a partial correctness semantics is nicely expressed
by Schwarz (1974, p. 28):

“ Asserti ng a partia l correctn ess statement is essentially ass ert ing that certain
environments are not the results of ezecuti ng some command starting in certain
other environments. . This is a negative requirement, ii does not force any
environment to be the result of any eseculion. Since this ii the inherent nature
of the formalism it indicates that the proper kind of definition of the semantics
determined by a system should have the form: ‘largest possible semantics.’ -

Def inition 3: Let J/ be a binary relation on predicates, Then

max(~.( f)  — ((s , ) I P(s) -. Q~t) for all (P, 
~ £ ~tfl .

We prove in Appendix B that max (Jf)  is indeed the maximum relation on states for which
all the pairs of predicates in fl hold. Moreover, we prove

Lemma 2: Let M be a relational semantics. Then M4 — max ((P, Q~ I P(a)O~is true for MJ .

An immediate consequence of Lemma 2 is that Ra - max( ~ ), which Implies that the
standard partial correctness semantics determines the standard relational semantics.7 The converse
determination follows by definition of ~~~~~, namely, ~~ - {(P, Q) I (P, Q) holds for Ra). Thus we
have

Theorem 3: The standard relational and standard partial correctness semantics are equivalent.

This theorem and the underlying Lemma 2 provide formal Justification for the thesis that
the initial-state final-state behavior of programs can be specified by the set of pca’s true of the
programs.8

4.2 Deducing Partial Correctness

The standard partial correctness semantics can, like the standard relational semantics, be
specified by a simple system of axioms and inference rules. The notion of the weakest antecedent,

- 1 _
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(R)Q , of a predicate Q under a relation R is used in the axioms for primitive instructions.
Informally, (R)Q~ is the predicate on states which is true of a state s provided that, if and when a
program with initial-state, final-state relation R halts after being started In s , the predicate Q, will
necessarily hold.9

It is worth emphasizing that we will keep to the usual mathematical conventions in the
vacuous case, namely, If the prograr~ does not halt started in state s, then (R)Q, is true of s for any
predicate Q,,

Definition 4: Let R be a binary relation on states. For any predicate Q~ on states, the weakest
antecedent of Qunder R is a predicate, (R]Q~,, on states defined by

((R)QJ(s) Lff (Vs’)( (s,s ’) € R -, Q~s ’)).

It follows immediately from Definitions 2 and 4 that ((M4JQ)(a)Q~, is true for any relational
semantics M which is why [Ma ]Q is called an “antecedent” of O~

We shall use the notation “~(P — QJ” to mean that predicate P implies predicate Q,~, that is,
Vs(P(s) -. Q~s)). The following lemma explains why (M0]Q,,is called weakesl

Lemma 3: P {a)Q is true for M 1ff ‘-(P -. (Ma)Q).

The proof follows directly from the definitions and is omitted (cf (Pratt, 1976; Hard , Meyer,
Pratt, 1975; Schwarz, 1974]).

The following system is usually referred to as the Floyd-Hoare system for partial correctness.

Axioms:

FHI . P{NOP}P ,

FH2. ((R A) Q) {A) Q.,

Inference Rules:

FH3. P(a)P’ , P ’{b) Q ’— P{ab)Q,,

FH4. (P A QJ{a}Qu— Qj while p do a}(QA -‘ P),

FH5. P{a)Q,’- (P A P’fla)(Q VQ’). —

Let Th(FHI-5) be the set of pca’s derivable from FHI-2 using FH3-5. We prove in Appendix
C, that FHI-5 specifies the standard partial correctness semantics. Formally, we can state
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Lemma 4: - { ( P , Q~) I P{a}Q € Th(FHI-5)J .

We have formulated Lemma 4 to emphasize our view of the system FHI-5 as a specification
of a mathematical object, namely, a partial correctness semantics which turns out to be the standard
one. As we did earlier for termination assertions we can also rephrase Lemma 4 from the more
familiar viewpoint that truth of pca’s is to be reckoned relative to the standard relational semantics.
Then Lemma 4 means that FHI-5 is a sound and complete deductive system for pca’s, that Is,

Theorem 4: The set of partial correctness assertions derivable from FHI-5 is equal to the set of
partial correctness assertions true for the standard relational semantics.

The system FHI-4 consisting of the first four of the Floyd-Hoare rules corresponds to the
Deductive Theory10 Dl-3 of Hoare and Lauer (p. 146]. The system FHI-4 is not complete, but we
will see in Section 4.5 that there Is a sense in which the incomplete system FHI-4 specifies the
standard relational semantics.1’

4.3 Axioms for Partial Correctness Semantics

Although a deductive system resembling FHI-5 is the more usual specification of the
standard partial correctness semantics, we can also write an axiom system to specify it. The axioms
are suggested straightforwardly by the deductive system.

PCI. P{NOP} Q .. “(P QJ,
PC2. P{A )Q.. “'(P -ø [R4]QJ,

PC3. P{ab)Q.. ~P’(P{a)P’ A

PC4. Qj wi,ile p do a}Q~’ 3Q”( ((P A Q”){a)Q’) A ‘-(Q— Q~,’) A

‘-( (Q” A -’P) -~O~,’)].

To say how these axioms specify the partial correctness semanucs we recall the technical
meaning of the word model and distinguish two special kinds of models.

A mathematical object is said to be a model for a set of assertions if all the assertions are true
for the object. We have already used this notion in Section 3 where the objects were relational
seman~ics and the assert ions were transition assertions. By Definition 2 we know what it mean s for
a pca to be true of a relational semantics, and hence we know when a relational semantics Is a
relational model for a set of assertions (such as PCI-f) involving pca’s. We can also regard a pta as
making an assertion about partial correctness semantics.

Definition 5: P(a)Q Is true for a partial correctness semantics 
~ ‘~ff 

(P, Q) € ~~~ A partial

0
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correctness semantics is a partial corre ctness model for an axiom system (such as PCI-4) 1ff it Is a
model for the set of all instances of those axioms.

Note that Definitions 2 and 5 are compatible In that if M is any relational semantics and 
~~~~~

‘

is the corresponding partial correctness, then P{a}Qis true for M 1ff it Is true for 
~!! 

In particular
P{a}Q has the same truth value in both the standard relational and partial correctness semantics.

Theorem 5(deBakker 12) The standard partial correctness semantics is the only partial correctness
model of PCI-4.

The proof is in A ppendix D.

Again, we have formulated this theorem to emphasize our view of PCI-4 as uniquely
specifying a particular partial correctness semantics.

4.4 Relational Models for Partial Correctness Specifications

We have just considered FHI-5 and PCI-I as direct specifications of partial correctness
semantics. We now take the more usual view and consider FHI-5 and PCI-4 as specifications of
relational semantics according to their relational models. Thus we can rephrase Theorems 2, 4 and
5 in part by saying that B is a relational model of TI-S. FHI-5 and PCI-4.13

Notice that despite Theorems 2 and 4, we cannot say that R is the only model of TI-f’ or
FHI-5. For example, the “empty” semantics which assigns the empty relation to every program is a
model of FHI-5, and the semantics which assigns the “total” relation SxS to every program is a
model of T1-5.

A set of pta’s will generally fail to have a unique relational model because, as suggested by
the quotation in Section 4.1, pta’s are “anti-monotone” in the following sense. if M and N are
relational semantics then we shall say that N is larger than M i/f Na D Ma for all programs a.
Then by Definition 2 we see that if P{a)Q is true for N, and N is larger than M , then Pta)Q
is also true for M. Thus, since B is a model of FHI-5, so is any relational semantics smaller
than R.14

On the other hand, Theorem 4 and Lemma 2 together imply that B is larger than any
model of FHI-5, so we can conclude

Theorem 6: The standard relational semantics is the largest relational model of FHI-5.

Similarly, transition assertions are “monotone” in the sense that if s(a)s ’ is true for M , and
N is larger than M , then s(a)s ’ is true for N. We conclude from Theorem 2 that

Theorem 7: The standard relational semantics is the smallest model of TI-S.
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Finally, we can deduce from Theorem 5 that
Theorem 8: The standard relational semantics is the only relational model of PCI-iThus, Theorems 6, 7, and 8 revea l precisely the different wa ys an which R is determined
uniquely by the specifications FHI-5, TI-f’, PCI-i.

We should point out that Theorem 8 is technicaliy a slightly weaker result than
Theorem 5~ Theorem 8 in effect asserts that among the partial correc(iiess semantics which are
determined by relational semantics, only the partial correctness semantics 

~ ‘determined by R is a
model of PCI-I. On the other hand, Theorem 5 asserts t hat among all partial correctness
semantics, not just those determined by relations, :~9 is the Unique model

4.5 Implications Between Semant,cal Specifications with Severa l ModelsThe need to deal with specsfications having several models of a given kind was allowed for
by Hoare and Lauer in their formulation of what they call “consistency” between semantical
specifications They say tha t one specification is consistent with another 1ff every model of the
latter is a model of the former.

N~ti~e that this definition is asymmet r~~ and so conflicts with ordinary usage of the word
“Consistency.” For this reason, we shall refer to “Implication” between specifications that ii ,
specification . “Implies specification ~~ I/f every model of ./‘ls * model of .~/.

Semantical specifications with more than one mode) can be useful We have just seen that
while FHI-~ and TI-f’ technically speaking have many relational models, nevertheless they uniquely
specify R In a natural way as the largest relational model arid smallest relatio nal model,
respectively Even more generally there may be situations in which any of several models wouki
Suffice for some application and we wish only to specify this set of appropriate models -- not
nece~~riJy dlsflnguashgng a canonical model In the set by Some criterion such as maximality For
exa mple, in the specification of practica l programming languages it IS typical to leave undefined
the meaning of certain syntactically well-formed programs In such cases there will be many
acceptable semantics differing only on the meanings, e.g., error messages, they assign to
“meaningless” programs.

In addition to the axioms HLI-5 considered above, Hoare and Lauer offer the first four rules
FHI-4 of the FSoyd-H~~~ system (cf footnote 10) as a specification with multiple relational models,
and they seem to suggest that these multiple models represent possible acceptable semantics.
However when we look more closely at the Hoare-Lauer and Floyd-H~~re axioms we shall see tha t
an example of a specification which coukl be met by many acceptable semantics does not arise here;
there is only one Intended model of these particular specIficatIons although it ta kes some effort to
discover the sense In which these specifications determine that model.
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In particular. Hoare and Lauer (Theorem 4) observe that I-ILL-f’ implies the first four Floyd-
Hoare rules FHI-4.1f’ For some reason they do not consider the converse question of whether PHI-f
implies HLI-5. In fact , it does not; not even the full Floyd-Hoare system PHI-S Implies HLI-5. This
is because any M smaller than R is a relational model of FHI-5, so that, for example, the empty
semantics is a model of FHI-5 but not of HLI-5.

However , Hoare and Lauer ’s proof that HLI-5 implies FHI-4 actually establishes a slightly
stronger result which we can use to reveal the connections between Hit-f’, FHI-4. and B.

An inference rule such as any o FH~-5 or Ti-f’ will be called sound for a relational semantics
M , if, whenever the conditions (such as those for T5) for applicability of the rule are satisfied and
the antecedent(s) of the rule is true for M. so is ~he consequent. In other words, an inference rule
is sound if application of it preserves truth.

Lemma 5: If M is a model of FHI-2 and the inference rules FH3-i are sound for M, then M is a
model of FHI-5.

Proof: It is easy to see that P145 is sound for all Mi

Theorem ~ R is the largest relational model of FHI-2 for which the inference rules FH3-4 are
sound.

Proof: We let the reader convince himself that FH3-4 are sound for the standard relational
semantics B (cf EHoare and Lauer, Theorem 4]). Thus, B is “a” model; that It Is “the largest”
model is immediate from Theorem 6 and Lemma 51

Lemma 6(Hoare and Lauer): Let M be a model of HLI-5. Then M is a model of FHL-2 and the
inference rules FH3-4 are sound for M.

We shall not repea t the proof (cf (Hoare and Lauer, page Ii?]).

Theorem 10: B ts the largest model of HL1-5.

Proof: Immediate from Theorem 9 and Lemma 6.1

The preceding theorems thus reveal the sense In which I-ILL-f’ and the first four Floyd-Hoare
rules P1-11-4 serve as semantical specifications equivalent to the others we have considered -- a
rather obscure technical sense which was left implicit by Hoare and L.auer.’6

Our point here is that while we agree with Hoare and Lauer that relationships like
Implications between specifications with multiple models are important ideas, It is even more
important to have a clear understanding of the family of models which are to be regarded as
meeting the specifications. This is illustrated by the fact that the semantics L of SectIon 3.2 is a
relational model both of HLI-5 and FHI-5, yet we certainly do not mean to accept an
Implementation of our language in which all while-loops diverge.

1.
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5. Predicate Transformers

There is yet another kind of semantics found in the literature, namely predicate transformer
semantics. Instead of assigning a set of assertions to a program as its meaning, one can assign a
function on predicates, called a predicate transformer, to that program. An example of a predicate
transformer is [R] for any binary relation It on states This transformer maps each predicate Q,
into its weakest antecedent [R)Q Another useful transformer as <R>. defined as transforming any
predicate Q into the predicate -‘(R)--iQ

The transformer which has received much attention recently as Dij kstra’s weakest pre-
condition wfr ~,,. The predicate wp4(Q) is described by Dijkst ra (1976, p. 16) as

“ t he condit ion which rharacic rise. all in i t ia l  stat es such thai activ ation wil l
cer ta inly result in a properly terminat ing happening, leavi ng t he sy s tem in a
Itnal state sai~sfy ~ng (the conáitio~ Q) ...“

We shall observe that for wslile-pro gr ams. if the primitive Instructions A are well-behaved,
e.g.. if the relations R,f are in fact functions, then wp6 (R a> This will enable us to conclude that
in such cases wp yields a predicate transformer semantics which is equivalent to the standard
semantics. However in the general case when nondeterministic primitive instructions occur, wp
semantics is incomparable to, i.e., it neither determines nor is determined by. the standard
semantics.

As with other kinds of semantics, predicate transformers can be specified in several ways.
We exhibit inductive definitions and deductive systems specifying w~ and cR~

5.1 The Weakest Antecedent and Possible Termination Transformers

The standard w.’a~est antecedent transformer semantics associates to each program a the
meaning (It0) Thus by definition it as determined by the standard relational semantics.
Conversely, observing that (P. 4) holds for It iff a.? — (EQ (if. Lemma ~\ it follows that the
standard partial correctness semantics is determined by the standard weakest antecedent
transformer. The same observation reveals that we may define the weakest antecedent directly in
terms of pca’s as follows:

(M4)Q. V(P I P{alQ is true for MI.17

Thus, the predicate transformer semantics based on weakest antecedent carries the same
information as relational and partial correctness semantics.

The predicate R~Q. defined to be —i(R]—iQ , can be described informally as being true of a
state s providing that: it is always possible starting in state s , to execute a (generally
nondeterministic) program with initial-state, final-state relation R and halt in a state in which Q is
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true. We refer to c R> as the possible termination transformer corresponding to R and define the
standard possi ble termination transformer as associating R4 with a. Again, since
(R]Q — ‘- cR>-4 we see that possible termination semantics carries the same information as
weakest antecedent semantics.

To summar ize, we can state

TA,ou,n 11: The standard weakest antecedent transformer, possible termination transformer, partial
correctness, and relational semantics are all equivalent.

f’2 Inductive Definitions of the Wea kest Pre-condition and Possible Termination Transformers

For the dass of whiis programs we consider, Dijkst ra (I976]I8 clarifies the Informal
description of weakest pre-condit ions quoted above by giving an inductive definition:

WPI. W/~~J o p(Q,) -

WP2. 
~Pa;b -

wp3. wPw4ile p do - VkHk

where H0- -” PAQ , and
H k.i - (P 1” ~iPa(H k )) V He

If we assume that nip4 is given for all primitive instructions A, then WPI-3 uniquely define
the weakest pre-condluon predicate transformer. In particular, when, as is typically the case, the
primitive instructions are functional, we ex pect that wp4 . .R A>.’9 The intuition behind this latter
equation is that it is appropriate to treat an instruction as primitive only if it is sure to terminate
whenever there is a legal termination state. It follows that if an instruct ion can passthl~ terminate
in a state satisfying Q, I.e., if <R 4 Q  holds, then because it Is a primitive instruction, It wIll
cer tainl y terminate in some state, and because it is functional this state of termination is unique and
satisfies Q~ . i.e., wp4 (Q) holds. In this situation, it turns out that weakest pre-condition and
possible termination semantics coincide for all programs of the simple kind we have been
constdertng.~~

Lenvna 7: If ni/i4 — for all primitive instructions A, then v/i a — <Re> for all programs a.

The proof, which we omit , follows directly by Induction on the structure of programs from
WPI-3 and the definition of R0 ..

As a consequence of Lemma 7, we can replace vp by cR> throughout WPI-3 thereby
obtaining an inductive definition of
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53 DeductIve Specification of Possible Termination

Assertions of the fo rm ~if P holds before executing a, then it is possible for a to halt with Q_holding irue are called terminati on ds$ertions and are abbreviated P(a)Q Termination assertionscorrespond to possible termination Ijansformers in the same way that pca’s correspond to weakestantecedents.

DefInition 6: P(a)Q is true/ or the relational semantics M 1ff ‘-(P — cMa>Q).
Thus, we have immediately that

<M4>Q. V(P I P(a)Qis true for MI.
arid we can regard a deductiv e system for terminat ion assertions as providing a specification of thepossible termina tion transf ormer.

We remark that termin ation assertions are a natura l generalization of the transit ionassert ions of Section 32; the transition assertion s(a)t is equiv alent to the terminat ion asserti onE5(a)E
~
, wher e E5 is the equa)s f predicate true on ly in state s. The fo llow ing deductive systemcorres pondingly generalizes TI-S.

Axioms:

TAI. P(NOP)P ,

TA2.

TA3. (~ PA4)(wliil , p do

Inference Rules:

TM. P(a)Q,’, Q (b) Q i- P(c b)O~
TAS, Q~a)Q , Q (whj le p do a)Q’ a- (PAQ)(wAiIe p do aXQ’A-~P)

TA6. P(a)Q ‘- (P APXaXQ,VQ );

TA7. P1(a)Q , P2(a)Q 
~
- (P1VP2Xa)Q

It is easy to see that TM-7 is sound for the standard relational semantics R. Although notall term ination assertions true for B are derivable, viz., TAI-7 Is not quite complete, those asserti onswho se antecedents areft nate are derivab le.

I
- -—-~ ~~~~~~~~~~~~
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Theorem 12: Let P be a predicate true in only finitely many states. Then P(a)Q, is derivab le from
TAI-7 1ff P(a)Q is true for the standard relational semantics.

It follows immediately that TAI-7 suffices to determine the standard possible termination
transformers.

Corollary 13: <R0>Q~— V~P I P(a)Q,c Th(TAI-7)}.

It is interesting to note that a complete system can be obtained by extending TA7 to an
infiriitary rule

TA8. jP1(a)QI i € I) ~- (V{P 1 Ii € I)Xa)Q,

where I is any index set.

Theorem 14: The termination assertions derivable from TAI-8 are precisely those true for the
standard relational semantics.

The proofs of Theorems 12 - 14 are in AppendIx £ 21

5.4 Weakest Pre-conditions of Nondetermintstic Programs

In contrast to all the kinds of semantics considered so far, weakest pre-conditions for
programs with nonfunctional primitive instructions reflect an understanding of the meaning of
programs which is neither determined by nor determines the meaning given by the standard
semantics.

To illustrate these differences~let 
~i 

be NOP, let be a primitive Instruction which resets
every state to a given state and let 43 be a primitive instruction which makes a nondeterministic
choice between behaving like 

~i 
or 

~~ 
Thus,

R41 — I, the identity on states,
R41 

- S x {
~o}’ the constant function mapping any state s to .s0, and

R A3~~
R AJ UR A2.

Since 
~I and 

~2 are primitive and fUnctional, we define

wp4 1(Q~) - R41>Q.- Q~, and

wp4 2
(Q) — <R 

~2>0
” 

— the constant predicate with value

In order to define the weakest pie-condition transformer for a nonfunctional primitive
Instruction such as 43. we rely on Dljkstra’s English description given above, combined with the
intuitive reasoning indicated before Lemma 7. Namely, the pie-condition which will certainly

_ _ _ _  _ _  _ _

—
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result” in post-condition Q~, after execution of a primitive instruction A is [R4)Q~ providing that
execution terminates; for a primit iv, instruction we ex pect execution to terminate whenever there Is
a final state related to the initial state, that is, whenever <R4 true holds. Thus we define

wp4 3
(Q,) - (R43)Q,,A <R 43

> true
- (R 43

)Q~,A true - (R43)Q,

- QA  Q~s~~~

Let a~ be the program while p do 4i. for i - I, 2, 3 and P - -‘E50. Then it follows from Rl-3

that

R01 
- ~~~ - {(

~o~o))
~ 

and

On the other hand, it follows from WP3 that

- wp03(Q) - E50 
A 

~~~ 
and

wp0 (Q) - wp42(Q) - QS~o)

Now we see that the initial-state, final-state relation of a program cannot in general
determine its weakest pre-condition transformer, because 02 and 03 are assigned the same relation
by the standard relational semantics, but define distinct wp transformers. Conversely, the w~
transformer of a program cannot in general determine its initial-state, final-state relation, because a

~
and 03 have the same wp transformer, but are assigned different relations.

The reason for these thscrepancies is, roughly speaking, that the intended interpretation of’
how a program “can certainly (emphasis added) result in a properly terminating happening”
reflected in WPI-3 requires, in addition to halting states being possibly accessible and all such states
satisfying proper post-conditions. that there be no possibility of looping” or “failing” branches

among the various courses of a nondeterministic computation (cf [Hard and Pratt, 1978; Hard ,
1978; Hoare, 1978)). Programs 02 and a3 differ in that 03 allows a possibility of Infinite looping, so
that w~62 

differs from w~03 even though R02 
- R03

. Similarly, even though 03 COfl halt on every

state and a~ 
halts only on 

~ 
from the point of view of certainty of proper termination, 03 Is no

better than a~ 
because 03 allows looping In every state other than s~ this is reflected in the fact

that w~01 — wfr0 3 even though R01 — R03
.

ft Is possible to extend the notion of relational semantics so that looping or failing is
exp licitly indicated by the presence of a special state, .L, with certain algebraic properties with

respect to the other states. With some care, an extended relational semantics can be defined
inductively with the result that the extended initial-state, final-state relation of a program does

indeed determine its wp (cf CdeBakker, 1978]). However, the converse difficulty, that w/~0 does not

determine either R0 or RI remains. 
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Satisfactory deductive or axiomatic charact -. Lions of wp for nondeterministic programs
have proven difficult to devise. For this reason among others, we are Inclined to agree with the
arguments in (Hard , 1978; Hard and Pratt, 1978) that the semantical ideas implicit in wp are better
treated by considering weakest antecedents, possible termination, looping, and falling, as four
separate notions.

6. Conclusion

We have mainly looked at three kinds of semantics •- relational, partial correctness and
predicate transformer -- and several ways of specifying a semantics -- inductive definitions, axiom
systems, deduction systems. Each semantics was specified with roughly equal economy and complete
precision in several of these ways. There was no particular technical problem in defining
rigorously how specifications determined semantics, although there were three or four different
mathematical mechanisms used to connect the specifications with the intended semantics.

The standard relational and partial correctness semantics are equivalent. This means that
the set of all partial correctness assertions true for our trivial programming language gives exactly
the same information as the relational semantics. (This is true despite the fact that in a certain
narrow technical sense partial correctness assertions cannot be used to express termination of
programs.) Either kind of semantics can be specified directly using an axiom system or a deductive
system; either semantics determines the other, independent of means of specification. For
deterministic programs , similar observations were made about predicate transformer semantics.
However , for nondeterministic programs the predicate transformer WPa may not determine or be
determined by the initial-state, final-state relation of program a. Satisfactory axiomatic alternatives
to the inductive specification of WPa have not been found.

It may be worth remarking that the entire preceding development extends easily to the
somewhat richer programming language considered by Lauer (1971] includin g conditional and 

- 
-

nondeterministic choice statements, blocks with local variables, and nonrecursive procedure
declarations and calls.

Syntax played a limited role in this paper. Only programs were syntactic objects ; predicates
were treated as mathematical , set-theoretic objects. The next refinement of the study begun here
involves restricting predicates to those which are definable in some agreed-upon formal notation,
e.g., first or second order logics of appropriate structures. When we restrict predicates in this way
the situation becomes more complicated -- and more interesting -- and the conclusions we reached
above about the equivalence of various kinds of semantics must be modified. Thus, there are cases
where the set of all true definable pca’s may not determine the proper relational semantics; in other
cases a restricted deductive theory may contain only a subset of all true definable pca’s and yet
determine the right semantics. We postpone to a later paper further discussion of the restriction to
definable predicates.

I
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In sum, we have illustrated that, from a purely formal viewpoint, attempting to specify the
meaning of a language in several ways can be made to work -- at least for very simple
programming languages when we -- unrealistically •- place no restrictions on the language for
expressing predicates. However, care had to be taken to indicate how each specification was to be
understood before it could be applied by any of the variety of possible users.
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Appendix A.

Proof of Theorem 1.

Theorem 1: The standard relational semantics Is the ofily model of HLI-7.

Let T be the set of transition assertions s(a)s ’ true for a relational model T of HLI-7. We
will prove by induction on a that (s , s ’) € R~ 1ff s(a)s ’ € T. Thus T — B.

If a is NOP then by HLS, s(NOP)s ’ € T .. s • .. (s , s ’) c RNOP. Similarly if a Is a
primitive statement, A, then by HLI, s(A)s ’ € T .. (s, s ’) € R4.

If a is bc then by HL2, induction, and R2,

s(b c) s ’ € T

I/f  3t[s(b):€T A :(c)s ’€ T]

1ff 3t((s , 0 € Rb A (t , s ’) € R1,]

lf f ( s, s ’) £ RbORC

tff (s , s ’) € Rb.,(.

The case of while statements follows directly from the following Lemmas Al and A2.

Lemma Al: lf ( s , s ’) € RwAUe p do b then s(w/iile p do b)s ’ € T.

Proof We need the following

Definition 41: For states s, s ’, program b and predicate P, let di it 6 p(s , s ’) be the least nonnegative
integer k, if any, such that there is a sequence 

~o 5k of states with the property that

(i) s~ —

(ii) 5k — s ’, and

(iii) P(s 1) A (si, ~~~ 
€ Rb for all nonnegative integers 14;

if no such k exists the distance dist 6p (s,s9 Is said to be infinite.

We take the following two facts as obvious from Definition Al. First, if dut6p (s,s ’) — nd,
then P~s) and there is an s

~ 
suc h that (s, s1).R6 and dls4p (sj ,s ’) — n. Second,

($ ,$~) € ~~~~~ p do b 1ff dlst6,p(i. s )  Is finite and -‘PCi’).

~~~~~~~~~~~~~~~~~~~~~~~~ - - 
..

... .. ~~~~~~~~ . _____
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Lemma Al follows by induction on dist6p (s ,s ’). If the distance is zero, then s — s ’ and from
the second fact above we conclude that —‘P(s). Then by HL6, s(whUs p do b)s ’ € T.

By the first fact above, if dist~p(s , s ’) — n . I we have P(s) and Cs, s~) £ R6 for some s~ such
t hat dtst 6,p(s1, s ’) — n. From (s, s~

) € R6, by Inducti on we have s(b)s 1 € T. By induction on n, we
have s 1(whlle p do b)s ’ € T. Therefore , by HL7, s(wh.ile p do b)s ’ c T.I(Lemma Al).

Lemma 42: If s(whlle p do b)s ’ € 1’ then Cs, s ’)  € Rwhjze p do 6’

P roof Let Out) be the predicate (s , 1) £ (Rp’Rf )°. We claim that A P(s1) A s1(b)s2 implies

Q~2) This follows by definition of Q and the fact that

sj (b)s2 € T implies 
~~ ~~ 

€ Rb by main induction on a.

We now have 04s) by definition, and s(while p do b)s ’ € T by hypothesis. By HL4 and the
precedin g claim , we can conclude Q~s ’), and by HL3 and s(while p do 6): ’ c T, we have -“ PC:’).

Now Q~s ’) A —‘PC:’) implies Cs , s ’) € 
~~~~ p do b by definition of RwhJIe p do

A2).

j
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Appendix B.

Proof of Lemma 2

Lemma 2: Ma — mar ((P, Q~) I P(a}Q, ls true for MI

We first prove the claim that max(..ft’ ) is the maximum relation for which all pairs of

predicates in If hold.

Definition Dl: Let R be a binary relation on states. Then define J4 — ~(P , Q~) holds for R).

Note that all the pairs in .11 hold for R 1ff J c.4. Thus the following lemma

establishes the preceding claim.

Lemma Dl : Rcmax(.#Y)iff..#c~~~.

Proof: (only if) Suppose (P. P’ ) € J. Then by definition of mar, P(s) • P ‘(s ’) for all
(s, s ’) € mar (.11). Thus, if R c max (. if),  then P(s) P ‘(s ’) for all (s, s ’) € R. That Is, by

Definition 2. (P, P ’) holds for R. So (P, P’) € ..14.

(if) Now assume (s, :9 £ R. By Definition 2, P(s) -. P ’(s ’) for all (P, P’) € .i4. If

..ñ’c .14, then P(s) P’(s ’) for all (P, I”) € .4~ and so (5, a ’) € ,,tax( .AV ) by definition of
,nax.I(Lemma 81).

Lemma B2: R - mar (.i~~). -

Proof R c max (..4~ ) by Lemma SI. To show equality, suppose 
~~ ~~ ~ R. Let E3 be the

predi cate true only of stat e s. Then (E 51, -‘E52) holds for R , so CE31
, ,E,2) £ .. sf~ and, by

definIt ion of max, 
~‘i ~ ~~ ~ max( . ,~~).I(Lemma 82).

Note that if M is a relational semantics, then .. f4~j — (a’, Qj (P. Q,~ holds for M~
} —

1(P, Q) I P(a}Q, is true for M), so Lemma 2 follows immediately from Lemma B2.

- — - ‘r~ —~~~~ - . ~~~~ ~~~ ~~~ — . - -
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Appendix C.

Proof of Theorem 4.

Theorem 4. The set of pca ’s derivable from FHI-5, is equal to the set of pca’s true for the standard
relationa l semantics.

We prove by induction on the structure of programs that P(a)Q~, true for B imp lies PIa}Q,,
derivable.

If PINOP) Q is true for B, then by Definition 2 and RI we conclude that P implies Q.,, viz.,
Q,,, or equivalently. P V Q-  Q~ Hence P (N OP}Q~is derivable by applying FHS to the FHI

axiom P(NOP} P.

If P{A}Q~,, is true for B, then by Lemma 3, P implies (R4)Q,, so Pt A}Q, is derivable by
applying FH5 to the FH2 axiom (1R4)O)IA)Q

If P{a;b)Q is true for B, then P(a}((R6)Q) must be true for B, as the reader can verify from
Definitions 2, 4, and R2. Also, ((R 6)Q~) {b} Q, is true for B by Definitions 2 and 4. By induction we
may conclude that P{a1((R 6)~ ) and ((R j ,] Q)(b} Q, are derivab le, and therefore P(ab} Q, is der ivable
by app lyin g FH3.

Finall y, suppose P1{wAi k p do aJP2 is true for B. Let Q- 1R,,~1, 
~ 

do aW2’ Then again it
follows directly from the definitions that

(I) P1 implies Q~
(2) Q~ A -‘P implies P2, and

(3) (Q A P){a}Q is true for B.
Then by induction, we conclude from (3) that (Q,, A P)ja )Q,, is derivable. Applying FHI, we

can therefore derive QJw/sile p do a}(Q,, A -‘P). But we can apply FH5 to the latter assertion to
derive (P 1 A O,){wAl/e p do a}( P 2 V (O~ 

A -~P)) which by (1) and (2) is the same as
P 1(while p do a}P2.

We omit the proof that FFll-5 is sound, I.e., if Pja )Q,is derivable then Pta)Q,,is true for R.I
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Appendix D.

Proof of Theorem 5.

Theorem 5: ,~~~~~ is the only partial correctness model of PCI-4.

The following lemma summarizes some facts about weakest antecedent which are used in the
proof.

Lemma Dl: Let R, R1, and R2 be relations on states.

(a) 3P ’ (~’(P-(R)P’) A ~
.(P’ -Q)) 1ff i.(P-{R]Q).

(b) (R 11R 2]Q,- (R 1.R 2]Q~,.

~c) ‘-(~RiQ~, 
-. Q).

Cd) RiQ -~ (RIRIQ).

Proof of Dl: (a). The implication from right to left is trivial since we can choose P — Q. The
converse follows from the easily verifi ed fact that (RXP’A Q,,) — (R]P ’ A R)Q,,(cf. (Pratt, 1976)).

(b). Follows from Definition 4. We omit the details (cf. (Pratt , 1976)).

(c) and (d). Note tha t (R 1UR 2)Q,- (R1]QA (R2)Q Hence, (R°)Q~- (I U R.RIQ.- (1)Q~,A (R.R°)Q
- Q,A (R’R°]Q~I(Lemma DI).

Let ‘be any partial correctness model of PCI-4. We show that 4 - R6 by induction on
the structure of program a.

(P. Q~) £ -11N0P 1ff (by Def. 5) P{NOP) Q is true for ~~ 1ff (by PCI) i(P -, Q) 1ff (by Def. 2
and RI) (P, Q~) € 4~op

(P,Q) -€ .h~ iff (by PC2 and Def. 5) i-(P ..(R4)Q)iff(byDefL2and Lemma 3) (P,Q)€ ‘~~,
.

Suppose a - b’.c. Then (Q, Qj) €

1ff (by PC3 and Def. 5) 3P ’((Q,, P’) £ .4 A(P’,Qj )€ J~)

i/f (by induction) ~P’((Q~,, P’) € 
~~ 

A (P’, Q~) €

i/f (by Def. 2 and Lemma 3) 3P’((i-Q,’4R~)P’) A )(P”. (R
~)Q’))

1ff (by Lemma Dl (a)) I’.(Q-. (RoXR~)Qj)
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~tf (by k.ernma Dl (b~I) ‘—(Q . (R 6.R~)Q’)

1ff (by R2. Lemma .~ , and Del ?) (Q, Q’) €

We need the following two lemmas for the case of a — a~l,gle p do 6.

L.’mww f l ’  (Q . Q’) ~~ ~ 
,
~ 

b implies

* 3Q (”-uQ -\ P’ I 1 ~~ 
‘
~ 

- Q’) A i..((Q~A —.P) .. Q’))

Pro.~f~f .“).~ (ca, Q’) ‘ ‘
~hi1i 

~
, ,i(’ I’

1ff i .(Q lRft1411~ ~ 
,i,~

1ff (by R’) ~(Q- ((R~ oR .R~~ )~~)

~~ p (by Lemma Dl ~~ ~(Q *

1ff (by Lemma Dl 
~~~~ 

3Q1~”~Q - ((R~.R,?1Q~) A ‘(Q4 *

Si.ne LR _,~)Q~ is . by Definuton 4. equivalent to —P • . this last formula is equivalent to
A

Let Q - E~R1~’R~,
)’iQ,~ where is a predicate whose existence is guaranteed by the previous

formula Then by definition of Q’, i(Q . Qi. By Lemma Dl (c), I(Q~’— Q~). This fact and

~C(Q~ A -”P) - Q’\ imply that ~ (Q A-’P) • Q’). Thus we need onip show that s..((Q~’AP) -.
[R1,Q ) By Lemma Dl (d\ i..(Q~ * [R piRh)Q’)~ which by Lemma Dl (b) and Definition 4
impl ies ~((Q’ \P’~ — [R jJQI I(Lemma D2).

Lemma 1) 
~~~ Q’) ~~ - ~,

—‘ 3Q(((Q”AP) -. [R1,IQ,~
) 

~~ ~(Q . Q”) A ~((Q”A-~P)

Proof ~t 
T) If ~Q. Q,’ ‘~ d . 

~
, ~ then by Definition 2, there exists s,s ’ satisfying

(t) Q~s) A (S ,S ’) Rn,AI!, p •~~ 
~ A —’Q’(s ’).

Since (s , ‘ )  ~~~~ ~~ 
,
~ 

~~. we have -‘~P(s ’), and , as we observed in Appendix A. there is a
sequence of states s1~ . , s~ such that

~i )  .~~~ —

~& i )  3k — s ’, and
uit~ P(s 1) A .i~~. ~~~~~ € for all nonnegative integers ick.

Now assume 0,’ sati sf ies

‘iv) s.r.(Q, 0,’), 
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(v) s.((Q,’AP) -. (R1)Q,’). and

(vi) Q~’A-’P) -.

If k.0, then s—s ’, so ~P (s) , (iv), and (vi) together imply (
~ s) . O,,’(s ’). which contradicts (4).

If bO, then by (4) and (iv) we have Q~
(
~o

)
~ 

By (iii) and Cv) we conclude Q,’(~i
) for i�k.

Then —, P(s 9, (ii), and (vi) imply 0~,’(s 9, again contradicting (P).KLemma D3).

We can now complete the proof of Theorem S

Suppose a - while p do b. Then (0,. 0,’) € 4
1/f (by PC4) 3Q~,’(((PAQ~,i, Q.,’) € .14 A ~.(Q -‘ 0,’) A i.((Q,’A-’P) -

~ 0,’))

1ff (by induc t ion ) 3Q,’(((PAQ,,’), Q~’) € ~~ A i.(Q . 0,’) A i.4(Q,’A-~P) ..

1ff 30,’D-((PAQ~,’) - (R 6]Q,,’) A b(Q~,-~ Q,,) A i.4(o~ A —P) .. 0,’)]

~~ (by Lemmas DI and D2) (Q,, 0,’) € ~~ ETheorem 5)

4 

~~~~~~~~~~~~~~~ . .,_ - - - ~_ . ,
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Appendix E.

Proofs of Theorem 12, Corollary 13, and Theorem 14.

Theorem 12: Let P be a predicate true in only finitely many states. Then P(a)0, is derivable from
TAI-7 

~ff 
P(a)O~,is true for the standard relational semantics.

In what follows, truth of termination assertions will be counted with respect to B, and
derivability with respect to TAI-7.

Soundness of the system TAI-7 follows directly from the definitions. That is, if QJa)Q,,’ is
derivable, then it is true. We omit details of the proof. ¶

Conversely, we prove completeness for termination assertions with finite an tecedents by
induction on program structure. Namely, if QJa)0,’ is true and 0, Is finite , then 04a)Q,’ is
derivable.

If a is NOP or a primitive statement, then all true assertions QJa)Q,’ are obviously derivable
from TAI, 2 and 6.

If a is b;c and Q,,~
b.,c)Q’ is true, then by TR2 and Definition 6 of termination assertions, there

is, for every state s such that Q4s), a state sequence s...s’...s ’ such that Q’(s ’), i s ’ € Ti’j, , and
s ”...s ’ € Tr~. Let 0,” : V{E3. I ~~~~ Note that if 0,is finite, so is 0,”. Moreover, Q~b)Q_” and

are true, and so by induction hypothesis they are derivable. But then 0Jb..c)Q~,’ is derivable
from them by TA4.

If a is while p do b, we first observe that if E3(a)E1 is true, then it is derivable. For if E5(a)E~Is true, then as in the proof of Lemma Al we have either

(i) diSt b,p(S,t) — 0, so s — t and —iP (s) , and therefore E5(a)Et Is derivable by TA3. or

(ii) dist&,p(s,t) — n+l, E5(b)E31 is true, E31(a)E1 is true and dist8p (sp,t) — n, for some state
Then by induction on n, E51(a)Et is derivable, and by the main induction

hypothesis E5(b)E51 is derivable, and therefore (PAE5XaXE1 A-’P) is derivable from
TA5. But since dist b,p(s ,i) > 0, we have P(s), and hence P A E5 E~. Also since

is true, we have —‘P(:) and hence E~ 
A -‘P — Et. Therefore E,(a)Et is

derivable.

Finally, if QJa)Q.’ is true, then it follows by definition that for every s such that Qjs) . there is
a t such that Q,’(t) and E5(a)E1 is true. By the preceding observation E,(a)E~ is derivab le, and
hence E5(a)Q’ is derivable by TA6. But 0, — V{E5 I ~~s)}, so If 0, Is finite, then Q~a)0,’ is
derivable by TA7 from {E5(a)0,’ I Qjs)}.I(Theorem 12).

L - --— -— .

~~
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Corollary 13: cR4>Q- V(P I P(a)Q € Th(TAI-7)).

Proof (cRa~Q,)(s) 1ff (by definition of cR4 ) 3tRs ,t) € R4 A Q~1)]

s/f (by Definition 6) E5(a)0, Is true

i/f (by Theorem 12) E3(m)0,is derivable

1ff (by TA6) 3P(P A E~ .E5 and P(a)Q,is derivable]

1ff the righthand predicate is true of s.ECorollary 13).

Theorem 14: The termination assertions derivable from TAI-8 are precisely those true for the
standard relational semantics.

Proof Soundness of TA8 follows immediately ftom the logical equivalence of Yi(P1 -. QJ and
3i(P

~3 -. 0,

To prove completeness, assume P(a)Q is true. Then E5(a)0, is true for all s such that P( s) ,
arid so is derivable by Theorem 12. But since P - VIE, I P(s)) , we can derive P(a)0, by
TA8J(Theorem 14).
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Notes -

I. In a later paper Hoare (1978) emphasizes the verification aspects of proof rules rather than their
use as a means of specifying semantics. However, it is the latter use on which we focus here.

2. We avoid the use of the word nondeterministic here because nondeterminism is a property of
how final states are computed from initial states, rather than merely being a property of which
initial states map to which final states. Nonfunctional relations can only arise from
nondeterministic programs, but functional relations do not necessarily arise only from deterministic
programs.

3. We emphasize that in this paper predicates are mathematical objects, not to be confused with
ex pressions denoting them.

4. This definition is essentially taken from Pratt’s [1976, Section 3.1, p. 115) definition of o-ary
relation ~emantscs.

5. Technically speaking. HLI-5 are axiom schemes in which a, b may be any progrims, 0, any
predicate, etc.

6. Pca’s are usually defined to be wholly syntactic objects, namely, to be of the form p(a}q where p.
q are predicate exp ressions. Similarly, in the thesis on which the Hoare and Lauer paper is based,
Lauer (1971, p. 67] defines a syntactic version of partial correctness semantics. Namely, he associates
with each program a certain set of pairs of predicate expressions.

However none of the theory we treat in this paper depends on the syntax of the expressions
used for predicates, and for this reason it is simpler to let the predicates themselves appear as
components of pca’s. In this way we avoid having to introduce rules for syntactic manipulation of
expressions, and also avoid problems arising ftom the fact that certain predicates may not be
definable using a particular class of expressions. We plan to treat these latter problems in a later
paper (cf. Section 6, third paragraph).

7. A similar observat ion is made by Pratt (1976, section 1.2].

8. Indeed, partial correctness semantics are potentially richer than relational semantics because not
all partial correctness semantics are derived from relational semantics. Put formally, any relation, - r

on predicates must be contained in ((P, 0) I (P, Q) holds for max (~J/)), but the containment is
proper in general. Such an . //does not correspond to the set of all partial correctness assertions
true for any sin gle relation on states. We shall, however, make no use In this paper of partial
correctness semantics which are not equivalent to relational semantics.

9. The ‘box” notation is taken from the “necessity” operator of modal logic following the
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suggestion of Pratt (1976]. Dijk stra (1976] refers to weakest antecedents as weakest liberal pre-
conditions. Schwarz [1974] called them exact semantk backward connections.

10. Hoare and Lauer omit FEll -- a minor oversight. Their D3 is misprinted, but it as clear from
their Lemma 9 that they intended to state FH4.

Ii. In Lauer’s thesis (1971) a “rule of consequence” equivalent to FH5 is included.

12. Theorem 5, in particular the characterization of whUe statements by PC4, is implicit in Lemma
2.3 of deBakker (1975].

13. Technically speaking. we should say that R is a model of Th(FHI-5) and Th(TI-5) where
Th( 3’) refers to the set of theorems deducible in deductive system 3’

14. This seems to be the technical content of the frequently heard remark that pca’s cannot be used
to assert termination, (cf e.g. (Hoare, 1969], (Manna , 1974), (Pratt, 1976)). The remark is correct, but
must not be misinterpreted as implying that pca’s are an inherently inadequate means of specifying
semantics. As we have seen in Lemma 2, the complete set of true pca’s uniquely determines B
despite the anti-monotonicity of pca’s.

IS. Hoare and Lauer refer to “theorems...proved in the relational theory”, rather than mentioning
models explicitly. They do not offer rules of inference for proving theorems from HLI-5. although
Lauer 11971] indicates by example that he intends the usual rules of predicate calculus to be applied.
We prefer the more general definition of consistency (implication) we have formulated in terms of
models, since this definition is not vulnerable to failures springing from the frequently unavoidable
incompleteness of effective inference rules. If we assume that a complete set of inference rules are
available, or alternatively if we use the model-theoretic notion of theorem, namely, an assertion is a
theorem when it is true of all models of the axioms, then their formulation of consistency is
equivalent to ours.

16. Note that although FHI-4 specify R according to the technical hypotheses of Theorem 9, it is
not true that Th(FHI-4) - Th(FHI-5), or even that B is the largest model of Th(FH1-4).

We regard the characterization of B in Theorem 10 as subtle because there is no particular
reason to look at largest models in the context of an axiomatization like HLI-5. Indeed, we saw that
by adding HL6-7 only one model is possible, so there is no reason to expect or rely on a condition
like maximality to force uniqueness.

17. A similar observation is made by Raulefs (1977, Lemma 2-I, p. II).

18. Dijkstra’s definitions can be found on pp. 25, 30 and 35. Our WP3 can be obtained from
Dijkstra’s definition of the do...od construct (p.35) by noting that while p do a is equal to
do p -s a od.
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19. Note that for programs which are not primitive statements, the restriction that R0 be a function
is not sufficient to ensure <R0> - W~ g (cf the examples in section 5.4).

20. Lemma 7 does not generalize much beyond the trivial class of w/IUe programs we are
considering. In particular, when nondeterministic program constructs such as guarded commands
are allowed in programs, Lemma 7 does not hold.

21. Recapitulating the developments in earlier sections, we could regard TAI-7 or TM-S as
specifying the standard relational models rather than possible termination transformers. Indeed
Theorem 7 together with Theorems 12 and 14 immediately imply that B is the smallest relational
model of TAI-7 and/or TAI-8. Since termination assertions, like transition assertions, are monotone,
we cannot hope to determine R as the uni que model of TAI-8.

However , note that by fashioning a deductive system involving both pca’s and termination
assertions, using FHI-5 and TAI-7 for example, one can obtain B as the unique model. Our point
here is that there is no special inadequacy of deductive specifications which prevents them from
determining a unique model.

22. Alternatively, we can reach the same definition of wp4. by regarding 43 as the
nondeterministic join of 

~l and A2. That is, using Dijkstra’s guarded command notation, 43 is
equivalent to if true- ’A 1 H true-i A2 fi , so that wp43 - vp41 A wp42 (Dijkstra, 1976, p.34].

March, 1979
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